10

15

20

25

30

Execution Unit for Digital Signal Processor

Technical Field

The present invention relates to an execution unit for use in a digital signal processor,
as defined in the preamble of claim 1. The invention also relates to a digital signal

processor suitable for OFDM systems.

Backeround and Related Art

For increased performance and reliability many mobile terminals presently use a type
of Digital Signal Processor DSP known as a baseband processor (BBP), for handling
many of the signal processing functions associated with processing of the received the
radio signal and preparing signals for transmission. It is advantageous to separate such
functions from the main processor, as they are highly timing dependent, and may
require a realtime operating system. There is a desire that such baseband processors
should be as flexible as possible to adapt to developing standards and enable hardware

reuse. Therefore, programmable baseband processors, PBBP have been developed.

Many of the functions frequently performed in such processors are performed on large
numbers of data samples. Therefore a type of processor known as Single Instruction
Multiple Data (SIMD) processor is useful because it enables one single instruction to
operate on multiple data items, rather than on one data item at a time. Multiple data
items may be arranged in a vector, and a processing unit suitable for operating on a

vector of data will be referred to in this document as a vector execution unit.

As a further development of SIMD architecture, the Single Instruction stream Multiple
Tasks (SIMT) architecture has been developed. Traditionally in the SIMT architecture
one or two SIMD type vector execution units have been provided in association with

an integer execution unit which may be part of a core processor.

International Patent Application WO 2007/018467 discloses a DSP according to the

SIMT architecture, having a processor core including an integer processor and a



10

15

20

25

30

program memory, and two vector execution units which are connected to, but not
integrated in the core. The vector execution units may be Complex Arithmetic Logic
Units (CALU) or Complex Multiply-Accumulate Units (CMAC). The core has a
program memory for distributing instructions to the execution units. In
WO02007/018467 each of the vector execution units has a separate instruction decoder.
This enables the use of the vector execution units independently of each other, and of

other parts of the processor, in an efficient way.

A prior art vector execution unit typically comprises a first and a second data input
port for receiving data that is to be processed. The data may be complex or scalar data
and may typically be in the form of data vectors. The vector execution unit also
comprises an output port for feeding the result of the processing to another unit in the
DSP. A particular type of vector execution unit, known as Complex Arithmetic and
Logic Unit (CALU) is able to perform a very limited set of multiplications, in practice
multiplication of data items with +1 +i. To this end the CALU also has an integer

port. This integer port is arranged to receive integer data to control the multiplication.

Summary of the invention

It is an objective of the present invention to provide new ways to use the SIMT type
digital signal processor, and in particular increase the functionality of the vector

execution units.

This object is achieved according to a first embodiment of the invention by a vector
execution unit for use in a digital signal processor, said vector execution unit
comprising:
e A first vector input port for receiving at least a first input data vector from at
least a first unit in the digital signal processor, respectively,
¢ An instruction decoding unit arranged to decode instructions received from a
program memory of the digital signal processor,
e A vector output port for feeding the result of the instruction decoding to at least

another unit in the digital signal processor,



10

15

20

25

30

e At least one data-path.
The vector execution unit is characterized in that the instruction decoding unit is
arranged to control the data-path to perform a comparison related to the first input data
vector, and in that the processor comprises an integer port arranged to output the result
of the comparison in the form of a decision vector to a memory unit or a functional

unit in the digital signal processor.

This represents a new type of use of the vector execution unit in that the integer port is
used for output of integer data. This in turn enables a new type of command,
comparing two or more data items to produce an integer output indicating the result of
the comparison. The output integer data may be stored in an integer memory for later

use, or may be used directly as input data for another unit in the DSP

Alternatively, or in addition, the vector execution unit may be characterized in that the
integer port is arranged to receive a decision vector of integer data, and the instruction
decoding unit is arranged to control the data-path to process the first input data in

dependence of the value of the integer data.

By using the integer port to receive decision data that will influence the processing of
data items a greater flexibility can be achieved. This embodiment is particularly useful
for filtering functions in which values representing noise should be filtered out and
actual signal values should be kept as they are. Other uses are of course perceivable as

well.

In a preferred embodiment the vector execution unit is arranged both to generate a
decision vector to be output on the integer port and to receive a decision vector to use

as input for controlling the execution of instructions.

Preferably, the vector execution unit further comprises a second vector input port

arranged to receive a second input data vector from a second unit in the digital signal



10

15

20

25

30

processor, the instruction decoder being arranged to control the data-path to perform

the comparison based on the first input data vector and the second input data vector.

The inventive vector execution unit may comprise one, two or more vector input ports,
depending on the type of instructions it is to execute. If only one input data vector is
received the vector execution unit may be arranged to perform a comparison between

the first data and a constant.

The instruction decoding unit may be arranged to control the data-path to perform an
arithmetic operation on the first and/or second input data vector and use the result of
the arithmetic operation in the comparison. This arithmetic operation may involve one
or more of the data items received on the vector input ports. In this way, for example,

squares or absolute values may be compared.

In the instruction decoder is arranged to control the data-path to perform two or more
comparisons on the input data item and the decision vector will have one data item
indicating the result of each comparison. The output decision vector may have only
one data bit resulting from each comparison, or a number of bits indicating different
properties of the input data. As a non-limiting example, three bits may be used to
indicate if the input data item is greater than a particular value, if its absolute value his
greater than zero and if the squared value is greater than some other value. In this case
the vector execution unit arranged to use this decision vector must be arranged to pick

the right value for each integer data item to be used as decision input.

In one embodiment the instruction decoder is arranged to control the data-path to
perform the comparison on one data item from each input port at a time and output a
vector of data having one or more data items for each comparison. In this way a
number of comparisons of the same data items may be made at one time and the

resulting decision vector may be used, for example, to control different functions.



10

15

20

25

30

A typical vector execution unit in the prior art has four data paths. In a vector
execution unit having two or more data-paths, the instruction decoding unit may be
arranged to control the data-paths to perform an arithmetic operation on the input data
received on the two or more data-paths and use the result in the comparison. The input
data received on two of the data-paths may be processed together and the input data
received on the other two data-paths may be processed together and the comparison
may be performed on the results of the processing. As the skilled person will

understand, this can be extended to any number of data-paths.

The invention also relates to a digital signal processor comprising a program memory

and at least one vector execution unit according to the invention.

Brief Description of the Drawings

Figure 1 shows a digital signal processor in which a vector execution unit according to
the present invention may be used.

Figure 2 illustrates a vector execution unit according to an embodiment of the
invention.

Figure 3 illustrates the communication between the units involved according to a first
embodiment of the invention.

Figure 4 illustrates the communication between the units involved according to a

second embodiment of the invention.

Detailed Description of Embodiments

Figure 1 shows a digital signal processor in which a vector execution unit according to
the present invention may be used. Figure 1 illustrates an example of a baseband
processor 200 according to the SIMT architecture. The processor 200 includes a
controller core 201 and a first 203 and a second 205 vector execution unit, which will
be discussed in more detail below. A FEC unit 206 as discussed in Figure 1 is
connected to the on-chip network. In a concrete implementation, of course, the FEC

unit 206 may comprise several different units.



10

15

20

25

30

A host interface unit 207 provides connection to the host processor (not shown). If a
MAC processor is present, it is connected between the host interface unit 207 and the
host processor. A digital front end unit 209 provides connection to an ADC/DAC unit

in a manner well known in the art.

As is common in the art, the controller core 201 comprises a program memory 211 as

well as instruction issue logic and functions for multi-context support.

The controller core 201 also normally comprises an integer execution unit 212
comprising a register file RF, a core integer memory ICM, a multiplier unit MUL and
an Arithmetic and Logic/Shift Unit (ALSU). These units are known in the art and are

not shown in Figure 1.

In this example each of the first vector execution unit 203 is a CMAC vector execution
unit and the second vector execution unit 205 is a CALU vector execution unit, each
comprising a vector controller 213, a vector load/store unit 215 and a number of data
paths 217. The load function is used for fetching data from the other units connected to
the network 244 (for example from a memory bank) and the store function is used for
storing data from the execution units 203, 205 to for example a memory unit 230, 231
through the network 244. Data may also be obtained from other vector execution units
and/or the computing results may be forwarded to other vector execution units for
further processing. Each vector execution unit also comprises a vector controller 213,

223 arranged to receive instructions from the program memory 211.

The vector controller of this first vector execution unit is connected to the program
memory 211 of the controller core 201 via the issue logic, to receive issue signals
related to instructions from the program memory. In the description above, the issue
logic decodes the instruction word to obtain the issue signal and sends this issue signal
to the vector execution unit as a separate signal. It would also be possible to let the

vector controller of the vector execution unit generate the issue signal locally. In this



10

15

20

25

30

case, the issue signals are created by the vector controller based on the instruction

word in the same way as it would be in the issue logic.

Alternatively, the vector execution units 203, 205 are CALU vector execution unit of a
type known in the art, comprising a vector controller 223, a vector load/store unit 225
and a number of data paths 227. The vector controller 223 of this second vector
execution unit is also connected to the program memory 211 of the controller core
201, via the issue logic, to receive issue signals related to instructions from the

program memory.

The vector execution units 203, 205 could also be any kind of vector execution units.
Although two vector execution units are shown and discussed, the inventive method
can be extended to sending the same instruction to three or more vector execution

units.

There could be an arbitrary number of vector execution units, in addition to the two
shown in Figure 1. There may be only CMAC units, only CALU units or a suitable
number of each type. There may also be other types of vector execution unit than
CMAC and CALU. As explained above, a vector execution unit is a processor that is
able to process vector instructions, which means that a single instruction performs the
same function to a number of data units. Data may be complex or real, and are grouped
into bytes or words and packed into a vector to be operated on by a vector execution
unit. In this document, CALU and CMAC units are used as examples, but it should be
noted that vector execution units may be used to perform any suitable function on

vectors of data.

To enable several concurrent vector operations, the processor preferably has a
distributed memory system where the memory is divided into several memory banks,
represented in Figure 1 by Memory bank 0 230 to Memory bank N 231. Each memory
bank 230, 231 has its own complex memory 232, 233 and, address generation unit

AGU 234, 235 respectively. The PBBP of Fig. 1 also includes one or more optional



10

15

20

25

30

integer memory banks 238, including a memory 239 and an address generation unit

240.

As is known in the art, a number of accelerators 242 are typically connected, since
they enable efficient implementation of certain baseband functions such as channel
coding and interleaving. Such accelerators are well known in the art and will not be
discussed in any detail here. The accelerators may be configurable to be reused by

many different standards.

An on-chip network 244 connects the controller core 201, the digital front end unit
209, the host interface unit 207, the vector execution units 203, 205, the memory banks

230, 232, the integer bank 238 and the accelerators 242.

The first and second vector execution unit 203, 205 are shown as a four-way CMAC
units with four complex datapaths that may be run concurrently or separately. The four
complex data paths include multipliers, adders, and accumulator registers (all not
shown in Figure 1). Thus, in this embodiment, CMAC 203 may be referred to as a
four-way CMAC datapath. In addition to multiplying and adding, CMAC 203 may
also perform rounding and scaling operations and support saturation as is known in the

art.

Figure 2 is a simplified illustration of a vector execution unit 300 according to an
embodiment of the invention. The vector execution unit may be a Complex Multiply
and Accumulate (CMAC) unit, a Complex Arithmetic and Logical Unit (CALU) or
any other type of processing unit that is capable of receiving and processing a vector
of data. The vector execution unit of this example comprises a first 302 and a second
304 data input port for receiving data through the on-chip network. Data may be
received through the on-chip network 244 from a memory unit, from another
execution unit or from any other suitable unit in the DSP. The data are processed by a
datapath 306 in the vector execution unit. The vector execution unit also has a data

output port 308 for outputting the result to another unit through the on-chip network.



10

15

20

25

30

The result may be fed to a memory unit, to another vector execution unit or to any
other suitable unit in the DSP. A vector load/store unit 310 is arranged between the
input and output ports 302, 304, 308 and the datapath 306, to enable communication of

data to and from the vector execution unit 300.

A vector control unit 312 is arranged to control the execution of instructions received

from the core of the DSP (not shown in Figure 2).

The data received on the input ports 302, 304 and output through the output port 308
will often be in the form of data vectors, which may have complex or scalar data. The
datapath 306 is arranged to work on vectors of data by performing the same type of

function on one data item from each vector at a time.

According to the invention, the vector execution unit also has an integer port 314
which in a first embodiment is arranged to output one or more bits indicating the result
of the function performed by the datapath 306. For example, the datapath 306 may be
arranged to perform a comparison, as will be discussed in the following. The result of
the comparison may be indicated by one or more bits, which may be output on the
integer port 314. The result of the comparison of each of the input data items in the

input vectors will be a vector of integer data items each comprising one or more bits.

The resulting decision vector may be sent to an integer memory unit to be stored there.
It may then later be retrieved by a functional unit, such as an execution unit or an
accelerator, to be used as decision input data by this functional unit. It may also be sent

directly to the functional unit to influence its data processing.

In a second embodiment the vector execution unit 300 is arranged to receive an integer
vector through the integer port 314 and use this integer vector as control data for its
next instruction. For example, the vector execution unit may be arranged to perform a
particular function on the input data if the integer data item is 1 and another function if

the integer data item is O.



10

15

20

25

30

10

Of course, in practice, the first and second embodiments may be implemented in the

same vector execution unit.

Figure 3 illustrates the units of the DSP that are involved according to the first
embodiment as discussed above, that is, a first and a second vector memory unit 230,
231, an integer memory unit 238, an on-chip network 244 and a vector execution unit
300. The vector execution unit 300 is arranged to receive input data from the vector
memory units 230, 231 and process them, and to output the result of the processing in
the form of an integer vector through the integer output port 314 to the on-chip
network 244. In this example, the resulting integer vector is written to an integer
memory unit 238. It could also be fed directly to a functional unit such as another
vector execution unit or an accelerator unit to control the processing performed by this
functional unit.

Of course, the vector execution unit 300 may also comprise a data output port as

shown in Figure 2.

Figure 4 illustrates the units of the DSP that are involved according to the second
embodiment as discussed above, that is, a first and a second vector memory unit 230,
231, an integer memory unit 238, an on-chip network 244 and a vector execution unit
300. A vector execution unit 400 is arranged to receive input data from the vector
memory units 230, 231 and process them, and to output the result of the processing in
the form of an output data vector. In this embodiment a third vector memory unit 403
is used to receive the output data vector, but it could instead be output to another

functional unit, not shown in Figure 4, as input data for this functional unit.

The vector execution unit 400 also has an integer input port for receiving an integer
vector from an integer memory 238. The decoding unit of the vector execution unit is
arranged to use the integer vector to control the processing of the input data received
on the two input ports. Typically, the value of the integer data item will be used to

determine which function should be performed on the input data items. For example,



10

15

20

25

30

11

the function may be that if the integer data item has the value O the output data item
should be set to 0, whereas if the integer data item has the value 1 the output data item
should keep the input value or be the sum, difference, or the product, of the input data

items.

As will be understood, the vector execution units 300, 400 which are shown in Figures
3 and 4 as having two input data ports could have only one data port or more than two
data parts as well. Further, when it is stated in the description that data are read from,
or written to, memory units, data could instead be read from or written to any suitable

unit in the DSP, for example an accelerator or another execution unit.

The comparison performed according to the first embodiment may be a direct
comparison between two data vectors A and B, which, for example, will compare
return a value 1 if the value of a data item in the vector A is greater than the value of
the corresponding data item in the vector B.
For example, if vector A has the following sequence of data items:

01234567
And vector B has the following sequence of data items:

33334444

The resulting vector from the operation “greater than or equal” would be
0001111

Because the first three data items are greater in vector B than in vector A, which will

return a 0. The fourth and fifth data items in the two vectors are equal and the

remaining data items are greater in vector A than in vector B, so the comparison will

return a 1. Of course, instead of “greater than or equal” and “smaller than”, one could

use “greater than” and “smaller than or equal”.

One input data vector may also be compared to a constant, which may be suitably
selected as a threshold value. For each data item in the vector that is greater than or

equal to the constant a 1 will be added to the decision vector. For data items smaller



10

15

20

25

30

12

than the constant, a O will be added to the decision vector. This is particularly useful to
filter out noise. The threshold may be set to a certain percentage of the highest value of
the input data vector. The decision vector will then be used by a functional unit to
process the data vector in a new operation as described in connection with Figure 4.
Using the decision vector, all data items in the data vector that are lower than the
threshold may be set to 0. The constant could be taken from any accumulator register,

constant register or control register in the vector execution unit.

It is also possible to perform an arithmetic operation on one or both data items before
the comparison, for example to square the data items, inverse it, or to use the absolute
value. Also, for complex input data it would be possible to use only the real part or the
complex part in the comparison.
A non-limiting list of examples would be

|Al' > IBI

Al < B

A > x, x being a constant

Re{A} > Re{B}

Im{A} <y, y being a constant

In a vector execution unit having more than one data path, the vector execution unit
will read more than one complex data item at a time, one on each data path. In this
case, the data items received on two or more data paths can be processed together, for
example multiplied, subtracted or added and the results may be used in the comparison
according to the invention. This means that in a typical vector execution unit having
four data paths, the data items received on two inputs can be processed together and
the data items received on the two remaining inputs can be processed together and the

results can be compared to produce the decision vector.

It is also possible to let the instruction decoder perform several operations on each
input data item. For example, for complex data items, the real parts and the complex

parts of the data items may be compared separately, each comparison giving a decision



10

15

20

25

13

data item in return. Alternatively, or in addition, one or more arithmetic operations
may be performed on the data items before the comparison, so that for example the
square value, the absolute value or the inverse value is used in the comparison. Also,
as yet another example, a decision data item may be used to indicate if two values are
the same. Each comparison will return one decision data item which may be one or
more bits. Hence, the decision vector will comprise more than one decision data item
for each input data item, each decision data item indicating one property of the input

data item.

In this case, the instruction decoder is arranged to select which one of the decision data
items related to an input data item is to be used to determine how to process the input

data item.

As an example consider an integer vector having 3 bits per value, which has been
created by comparison of vectors A and B by subtraction A-B. The bits are as follows:
Bit O: negative flag = 1 if the result was negative, that is, if B>A

Bit 1: zero flag =1 if the result was 0, that is, if A=B

Bit 2: overflow flag = 1 if the result is too large, that is greater than a threshold value.

This integer vector could be used to execute, for example, a “select equal” instruction
that would select the operand A if the flag in bit 1, that is, the zero flag, was set and
operand B if the flag in bit 1 was not set. The integer vector could also be used to
execute a “select greater than” instruction, which would select operand A if the flag in

bit O was 0 and operand B if the flag in bit O was 1.

As will be understood, these are merely intended as non-limiting examples. The skilled
person could easily apply the general principles of these examples to a wide variety of

situations.



	Beskrivning på engelska inkommen elektroniskt

