

Plattvärmeväxlare

Konstruktion

Plattvärmeväxlare består av ett antal kvadratiska, parallella plattor. Mellan plattorna går varm och kall luft i varannan kanal och värmen överförs genom plattorna. Fläkt Woods produktnamn för plattvärmeväxlare är RECUTERM®.

Plattorna är tunna och gjorda av ett värmeledande material för att värmegenomgångstalet skall bli stort.

För att möjliggöra luftanslutningar måste växlaren byggas i korsström. Detta gör att temperaturverkningsgraden blir betydligt lägre än för den roterande växlaren. Det innebär också att hörnet mellan uteluftsida och avluftsida blir ett så kallat "kallt hörn" med låg tilluftstemperatur.

Vid kall uteluft kommer frånluften att avkylas under sin daggpunkt och man får en kondensutfällning. Man måste därför ha ett tråg under frånluftsdelen med ett avlopp. På grund av risk för vattenmedryckning bör man vid lufthastigheter över ca 3 m/s ha droppfångare på avluftsidan. Vid hög luftfuktighet kan det behövas ett tråg även på tilluftsidan.

För att kunna reglera tilluftstemperaturen och förhindra påfrostning byggs ofta växlaren med en bypass av uteluft. Plattavståndet i värmeväxlarna anpassas till storleken så att stora värmeväxlare har större avstånd mellan plattorna än mindre. Detta gör att lämpligt tryckfall alltid kan erhållas.

På- och avfrostning

Vid utetemperatur under cirka –7 °C kan kondensatet frysa till is. För att förhindra igensättning finns flera metoder:

- Sektionsvis, kontinuerlig avfrostning under en viss utetemperatur
- By-pass av uteluft så att avluftstemperaturen alltid är över noll och ingen is kan bildas.
- · Avstängning av tilluftsfläkten tills isen smält.

Sektionsvis avfrostning (sektionsavfrostning) är en effektiv metod. Växlarens tilluftsida delas upp i 2 till 4 sektioner. Dessa stängs sedan för kall uteluft i sekvens och den varma frånluften smälter den is som finns i sektionens frånluft.

Under sektionsavfrostning sjunker tilluftsflödet marginellt. Verkningsgraden sjunker också beroende på hur många sektioner man har. Vid fyra sektioner sjunker verkningsgraden med cirka 10 % på grund av att flödesbalansen på den aktiva delen ändras. Vid två sektioner sker en reduktion med 50 %.

En annan metod är att förhindra påfrostning genom att använda ett by-pass spjäll. Spjället styrs modulerande så att avluftstemperaturen vid kalla hörnet aldrig understiger till exempel 2 °C. Med denna metod begränsas verkningsgraden vid låga utetemperaturer och lika massflöden på till- och frånluftssida till 20 - 25 %.

Läckage

Plattvärmeväxlare kan byggas mycket täta, med läckage mindre än 0,5 % vid tryckdifferens på 400 Pa. Tillser man sedan att trycket är högre på tilluften än frånluften så får man ingen överföring av gaser eller partiklar från frånluft till tilluft.

Korrosionsskydd

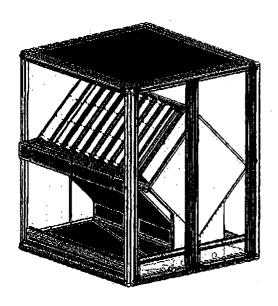
I starkt korrosiva miljöer där korrosionsskydd av plattvärmeväxlaren behövs används expoxibelagd aluminiumplåt.

We Bring Air to Life

Fläkt Woods Group kan erbjuda ett komplett sortiment av produkter och lösningar för ventilation, luftbehandling och industriell luftteknik

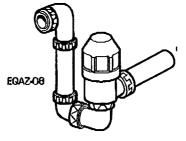
Försäljningskontor

•	Luleā	0920-25 83	30
†	Skellefteå	0910-393	36
ŧ.	Umeå	090-71 40	90
†	Sundsvall	060-67 82	80
ŧ.	Uppsala	018-67 79	40
†	Västerås	021-83 10	OO
†	Sollentuna	08-626 49	00
ļ.	Karlstad	054-12 09	50
igwedge	Örebro	019-26 15	80
†	Norrköping	011-32 02	50
†	Jönköping	036-19 30	$\Box\Box$
•	Växjö	0470-71 77	OO
igwedge	Kalmar	0480-156	66
d l	Göteborg	031-83 65	30
†	Halmstad	035-15 71	20
ļ.	Helsingborg	042-26 91	80
I	Malmö	036-19 30	00


Fläkt Woods AB Kung Hans väg 12 SE-192 68 Sollentuna Tel. 0771-26 26 26 www.flaktwoods.se

Installation and maintenance Instruction

Plate heat exchanger


EQRC Plate heat exchanger

The EQRC RECUTERM® plate heat exchanger is equipped with a sloping drain tray on the exhaust air side for collecting the condensate.

The EQAZ-01 flushing water trough is available as an accessory for collecting the water used for cleaning the supply air side of the heat exchanger.

The drain tray and water trough have separate drain connections and should be connected to a water trap. The drain connection has an outside diameter of 32 mm.

The EQAZ-08 water trap is available as an accessory.

Plate heat exchanger with shut-off and by-pass dampers

The by-pass and shut-off dampers of the heat exchanger are mechanically interconnected.

As one of the dampers closes, the other will open. The dampers are designed for heat transfer control and defrosting.

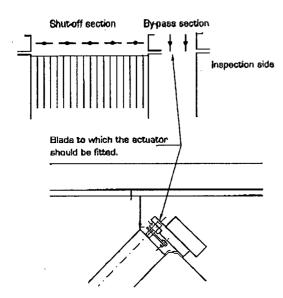
Plate heat exchanger with section-bysection defrosting

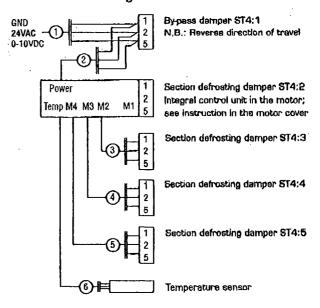
The heat exchanger is equipped with a <u>by-pass</u> damper and a combined defrosting and shut-off damper unit, as well as actuator, control unit and temperature sensor. The actuator for the by-pass damper is included. Install as described in page 2.

The defrosting and shut-off damper unit consists of a number of separately operated damper sections fitted with actuators.

The dampers are intended for heat transfer control and defrosting. During the defrosting period, one damper section at a time closes for 15 minutes. The bypass damper is closed. After one complete defrosting-cycle (1 hour), the heat exchanger reverts to normal operation for 90 minutes before a new defrosting cycle starts. Since only a small part of the heat exchanger is shut off, the supply air flow rate will be reduced by not more than 5-10% during the actual defrosting period. The magnitude of the flow reduction is dependent on the fan type and the operating point of the fan.

Rate till andringer (orbehalts


Installation and maintenance instruction


Plate heat exchanger

Fitting the actuator to the by-pass damper

Fit the actuator to the blade which is nearest to the heatexchanger. As an example, if the exchanger has two blades as by-pass section, fit the actuator to the second shaft viewed from the inspection side. Check that the damper closes and opens at the end of the actuator travel.

Connection diagram for EQRC plate heat exchanger, exchanger with section-by-section defrosting

Dampers ST4:2 -ST4:5 and the temperature sensor ere connected at the fectory.

Installation and maintenance instruction

Plate heat exchanger

"Cold corner" frosting prevention system The heat exchanger is equipped with by-pass and defrosting dampers.

The frosting prevention system consists of a control unit and a temperature sensor located in the coldest part of the exhaust air flow downstream of the heat exchanger, in the area known as the "cold corner".

At temperatures below the preset value of about +2°C, the actuator of the shut-off and defrosting dampers will be controlled so that the air flow through the heat exchanger will be gradually reduced, thus preventing frosting. If frosting nevertheless occurs, raise the temperature sensor set point to +3°C or +4°C.

The frosting prevention equipment and the damper actuators are not included, and must be ordered separately.

Service intervals

Inspection and possible cleaning should normally be carried out at intervals of 6 months.

This interval is based on an assumed operating time of about 2000 hours over a 12-month period and a normal comfort ventilation installation. If the dust content in the supply and/or exhaust air is high, the unit should be inspected more frequently

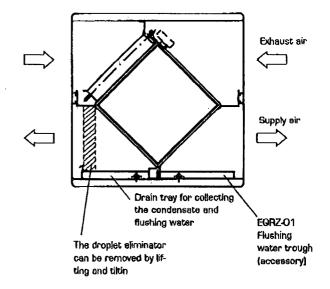
To remove dry dust

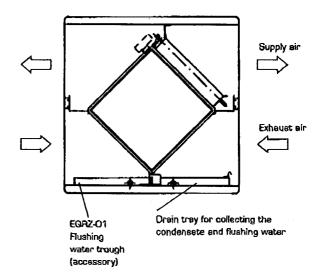
Dammsug eller blås igenom värmeväxlaren med tryckluft.

Check the inspection door gasket.

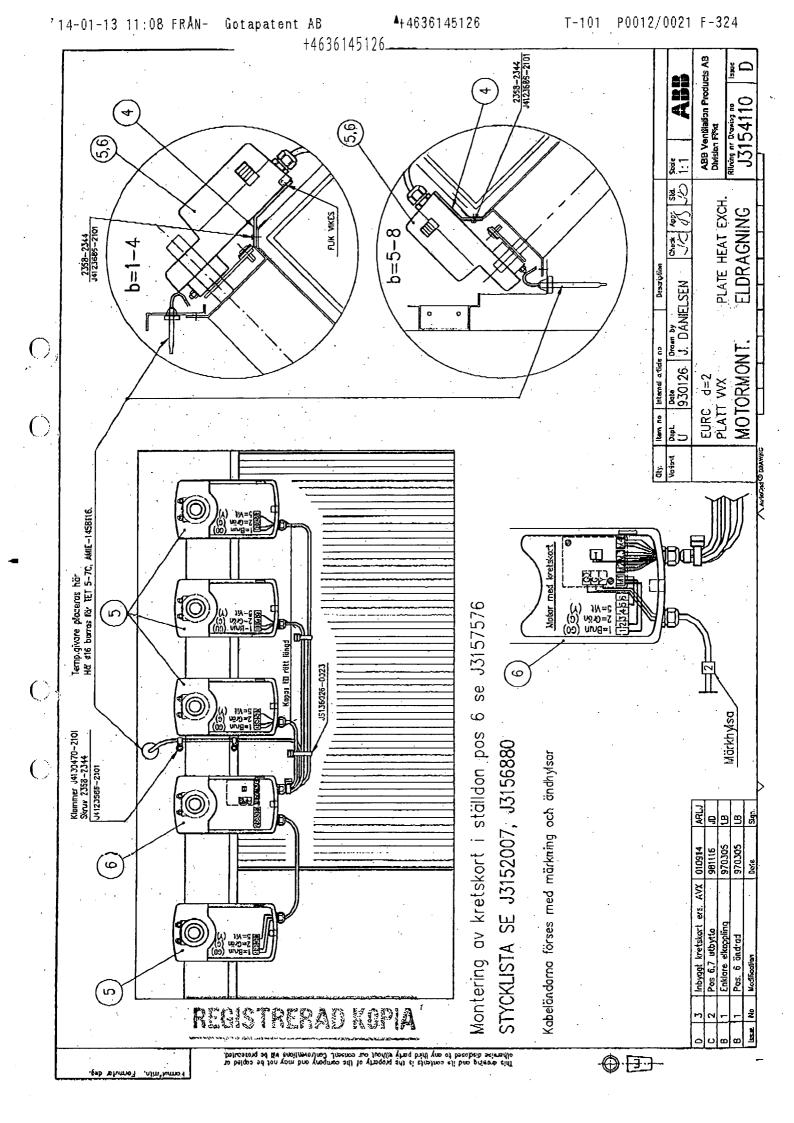
To remove fatty dust

- A. Apply cleaning agent to the face areas of the heat exchanger. A suitable degreasing agent is ULCZ-01 which can be ordered from your nearest sales office.
- B. Wait for 10-15 minutes.
- C. Flush with water.
- D. Vacuum clean or blow clean with compressed air.
- E. Check the inspection door gasket. Cleaning can also be carried out by high-pressure spraying, and the nozzle should then be held 3 - 5 cm from the face. After flushing, remove the water as above.

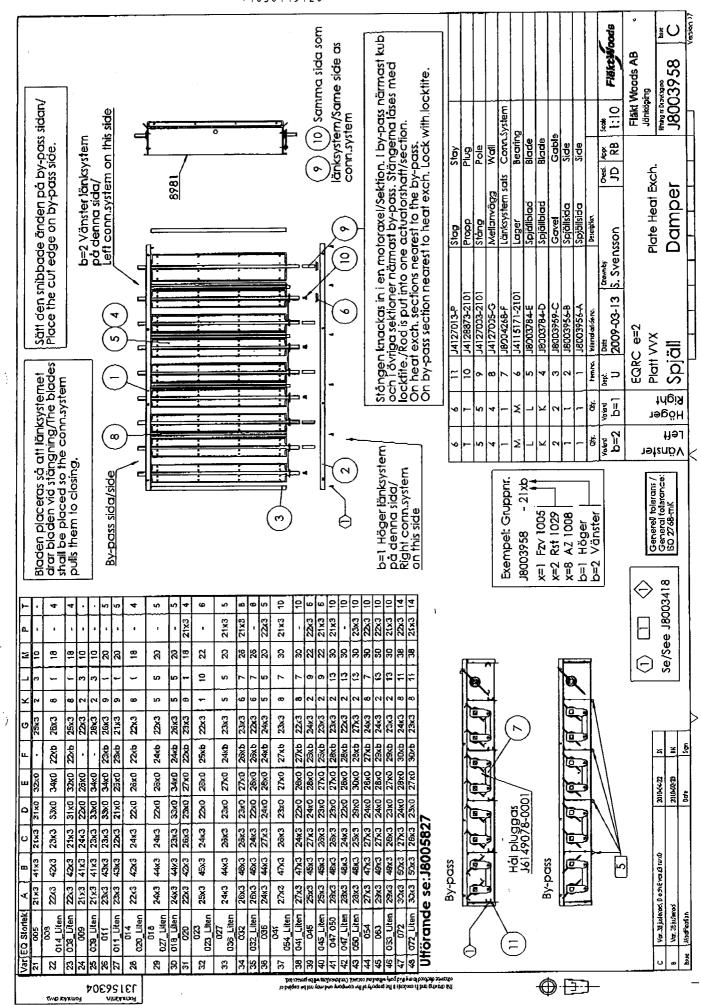

The EQRZ-01 flushing water trough is an accessory designed for collecting flushing water on the supply air side.


Caution! If a nozzle that delivers 2 l/min at 7 bar is used, the pressure at the nozzle must not exceed 25 bar if the nozzle is used at an angle of more than 20° to the face. The face area may otherwise be deformed.

Basic design


Supply air at the bottom

Supply air at the top


Ensure that the damper blades ere open during flushing

0

KWD KYKWOJ

+4636145126

SKOTSEL

Plattvärmeväxlare EURC

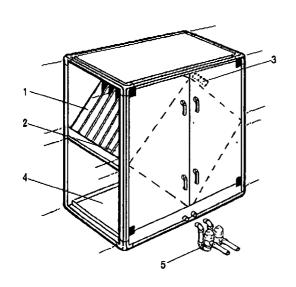


Fig. 1

- 1. Avstängnings- och förbigångsspjäll, alt. sektionsavfrostningsspjäll
- 2. Förbigångsspjäll
- 3. Placering av spjällställdon
- 4. Dräneringstråg
- 5. Vattenlås, ingår ej i EURC.
 OBS! Endast ett vattenlås för liten plattvärmeväxlare.

Injustering

- A. Kontrollera att vattenlåsen är fyllda. Erfordras ej om EUAZ-08 används.
- B. Spjället är konstruerat så att förbigångsdel och avstängningsdel sitter i samma spjäll. När förbigången öppnar så stänger avstängningsdelen och vise versa. Kontrollera att spjället stänger i sina tesp. ändlägen. Kontrollera att förbigångsspjället är stängt då anläggningens reglerutrustning kallar på full värmeåtervinning.

Avirostning genom verkningsgradsreglering [d = 1]

Värmeväxlarens förbigångs- och avstängningsspjäll skall styras samordnat så att temperaturen nära värmeväxlarens kalla hörn ej understiger +2°C. På detta sätt nedregleras återvinningsgraden så att påfrostning förhindras.

Nedregleringen av verkningsgraden startar då utetemperaturen är ca –5°C.

Sommartid skall hela tilluftsflödet ledas förbi värmeväxlaren, för att undvika oönskad återvinning och nedsmutsning av värmeväxlaren.

Viktigt! Kontrollera att båda spjällen stänger i sina respektive ändlägen.

Kontinuerlig avfrostning (d = 2) (sektionsavfrostning)

Värmeväxlaren är försedd med förbigångsspjäll och ett kombinerat avfrostnings- och avstängningsspjäll.

Avfrostnings- och avstängningsspjället består av ett antal separat manövrerade spjällsektioner. De är placerade före värmeväxlaren på uteluftssidan. Under avfrostningsperioden stänger en spjällsektion i taget under 15 min. Förbigängsspjället är stängt.

Efter en komplett avfrostningscykel (1 timma) så återgår värmeväxlaren till normal drift under 90 min, innan ny avfrostningscykel startar.

Eftersom endast en liten del av värmeväxlaren är blockerad, kommer tilluftsflödet att minska högst 5–10% under själva avfrostningsperioden. Flödesminskningen är beroende på fläkttyp och fläktens arbetspunkt.

Avfrostningsperioden startar då utetemperaturen är -7°C eller lägre.

Samtliga ingående komponenter i avfrostningssystemet, såsom reglerenhet, temperaturgivare, spjällställdon och ledningsdragning ingår i leveransen. Nedanstående anslutningsschema gäller när ingen styr- och reglerutrustning ingår i leveransen.

Anslutningsschema för plattvärmeväxlare EURC, delkod d = 2

Förbigångsspjäll ST4;1 OBS! omvänd gångriktning

Sektionsavfrostningsspjäll ST4:2
Reglerenhet inbyggd i motor, se instruktion i motorns lock
Power
Temp M4 M3 Sektionsavfrostningsspjäll ST4:3
Sektionsavfrostningsspjäll ST4:4
Sektionsavfrostningsspjäll ST4:5
Temperaturgivare

Spjäll ST4:1 –ST4:5 och temperaturgivare är inkopplad på fabrik

Luftbehandlingsaggregat EU

SKÖTSEL

Plattvärmeväxlare EURC

Tillsynsintervaller

Kontroll och eventuell rengöring ska normalt ske med 6 mån. intervaller.

Intervallens längd är beräknad på ca 2000 drifttimmar under en 12-månadsperiod och för en normal komfortinstallation. I miljöer med hög stofthalt i till-och/eller frånluft skall tillsyn av aggregatet ske oftare.

Rengöring, torrt stoft

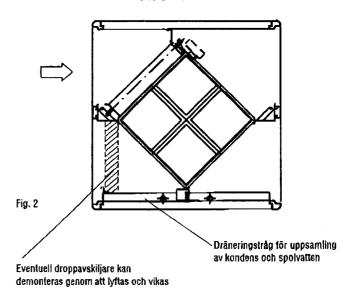
Dammsug eller blås igenom värmeväxlaren med tryckluft.

Kontrollera inspektionsluckans packning.

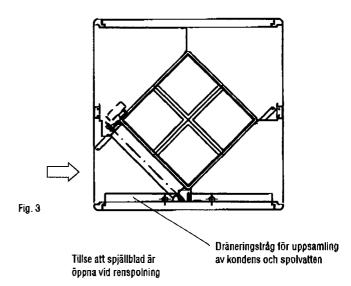
Rengöring, fett stoft

- A. Applicera rengöringsmedel på värmeväxlarens frontytor. Lämpligt kallavfettningsmedel är ULCZ-01.
- B. Vänta 10-15 minuter.
- C. Spola rent med vatten.
- D. Vattendammsug eller blås rent med tryckluft..
- E. Kontrollera inspektionsluckans packning.

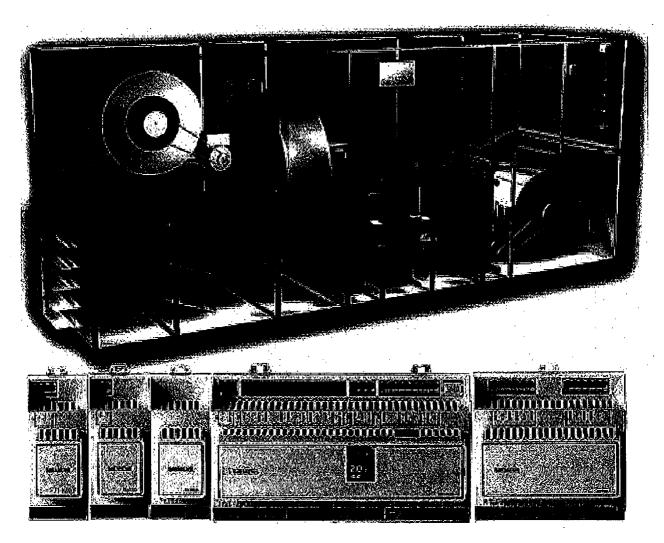
Rengöring kan även ske med högtrycksspruta varvid munstycket skall hållas 3-5 cm från frontytan.


Avlägsna vattnet enligt ovan efter renspolning.

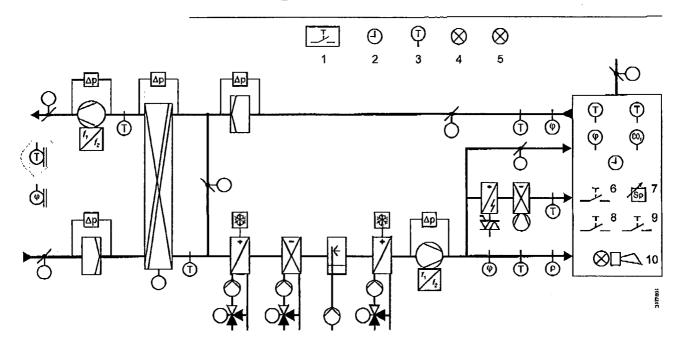
Varning!


Vid munstycksstorlek som ger 2 l/min vid 7 bar får ej trycket i sprutan överstiga 25 bar då munstycket avviker 20° mot frontytan. I annat fall finns risk för att frontytan deformeras.

Principutförande


Uteluft överst

Uteluft underst



SIEMENS

Climatix™ **Standard application AHU Basis document**

3.2 Diagram standard AHU

The figure displays a schematic of the entire functional scope for the standard AHU application. All aggregates, sensors and functions are selected and configured when configuring the air handling unit.

Legend

- Fire detector
- Time switch program
- Free temperature sensor
- Free alarm display
- Display of certain operating modes
- Occupancy button
- ~ Setpoint settings
- ~ Emergency button
- Acknowledge alarm
- Alarm display

Heat recovery

Heat recovery can be implemented in the following ways:

- Rotary heat exchanger.
- Plate heat exchanger.
- Water heat exchanger.

For pure supply air control, the room setpoint test is disabled and then only the outside air temperature-room temperature condition is considered.

Note

An outside air and room or return air temperature sensor required. If both a room and return air sensor is active then the return air sensor is used.

Sensor failure

The function is blocked when the sensor fails.

5.7 Heat recovery (Plate, wheel, water)

5.7.1 General

Prerequisite

Heat recovery is enabled and preconfigured in configuration 1, configuration 2 and configuration I/Os.

Enable heat recovery

Main Index > Configuration > Configuration 1

िर्मानार्थांचा	Reinote	lf iviaceitean
Heat recovery	- No	No heat recovery.
·	- Wheel	Rotary heat exchanger.
	 PlateExch 	Plate heat exchanger.
	- Water	Water heat exchanger.

Configuration

Main Index > Configuration > Configuration 2

िक्षाक्षामार्थाः	i Reinfest)	[Figures](om
Heat recovery frost	- No	 No frost protection.
·	- Detector	 Frost protection using a detector.
	- sensor	 Frost protection using a sensor.
	- Dtctr+Snsr	 Frost protection using a sensor and detector.
	- PressSnsr	 Frost protection using a pressure sensor.
	- Pres+Dtctr	 Frost protection using a pressure sensor and
		detector.
Hrec pump / cmd	– No	- No pump.
	- Yes	 Heat exchanger pump without pump kick.
	- Yes+Kick	 Heat exchanger pump with pump kick.
Hrec pump alarm	– No	- Pump without alarm or feedback.
	- Alarm	- Pump with alarm.
	- Fdbk	- Pump with feedback.
•	- Both	- Pump with alarm and feedback.
Heat recovery alarm	– No	Heat recovery with or without alarming.
	– Yes	
Hrec clg recovery	- No	 No cooling recovery.
, mee og veere,	- Hrec	 Cooling recovery, e.g. using a rotary heat exchanger.
	- DamperHrec	 Cooling recovery using mixed air dampers.
	- Both	- Both variants enabled.
Function	•	er heat or cooling. One plate, wheel or water ex- nd frost protection) is available. The plant can be

changer (with pump control and frost protection) is available. The plant can be started for a set period at full recirculation in dependence on the outside air temperature.

69/244

Heat recovery is forced off if:

- Night unoccupied (temperaturstart) cool
- Summer night cooling
- Firemode with running fan

Note

- Pump can also be used as a command for wheel.
- Frost sensor with wheel or plate activate an exhaust sensor. Frost sensor with water activate a water sensor. The exhaust sensor can also be used for efficiency.

Parameter

Master Index > Unit > Temperature Control > Heat recovery

Perennala	Renge	li iuntelitoin
Controller	0100 [%]	Present value for the heat exchanger controller. Go to controller settings page.
Output signal	0100 [%]	Present value for analog output. Go to page with all analog output settings.
Pump / cmd	- Off - On	Current pump status. Go to heat recovery pump page.
Alarm	– Ok – Alarm	Alarm state for heat recovery. Go to page with digital input settings. For example, you can set the time for jitter protection (Default: 0 s).
Frost monitor	- Ok - Frost.	Present state of frost detector. Go to page with digital input settings. The output limited for DeFrost MaxSpeed for "Frost" state. The plant is shut down after 20 minutes and an alarm is triggered.
Frost protection	- 0,100%	Present value for the frost controller. Go to Hrec frost protect page to parameterize frost control.
Frost protect press		Go to pressure frost page to parameterize frost control.
Efficiency	0100%	Present value of heat recovery efficiency. Go to page with settings for heat recovery efficiency.
Start up time	0600 [s]	Time for controller start behavior.
Start up tmp	-64.064.0 [°C]	Temperature limit for start behavior.
Max speed defrost	0100%	Maximum allowable output value for frost detection.

Startup behavior

The startup time for the output is set to 100% if the outside air temperature < Start up tmp. Afterwards, the controller determines the present position.

If heat demand exists at startup, the heating register is started in parallel, and after successful startup, the controller for heat recovery deploys to the maximum allowable position (100%).

Funktion Cooling recovery

Cooling recovery starts, when the following conditions are met:

- Outside air temperature > room temperature + 2K and
- Room temperature > room setpoint + 1K

Cooling recovery stops for the following cases:

- Outside air temperature <= Room temperature or
- Room temperature >= room setpoint.

For pure supply air control, the room setpoint test is disabled and then only the outside air temperature-room temperature condition is considered.

17.10 Global functions

17.10.1 General

	t > Global Function						\$5 5 KK
Parameter	Function	Value range	Unit	Standard :	Σ	Ś	Link,
Su/Wi calculation	Status of Summer Winter compensation	Winter				X	
		Summer	1				
Manual mode	Status from the Plant if anything is in	Manual				X	
	Manual Mode	Auto					
Enable manual alarm	Enable the Alarm for Manual Mode	No		No		6	Section:
		Yes					5.1.1
Enable comm test	Enable the comminication Test	No	 	Ño		6	
		Yes					
Communication test	Staus from the communication Test	Off		Off			
		lOn					

17.10.2 Su-Wi compensation

Main index > Uni	t > Global Function > Su-Wi comp	ensation 🚋 🐬	Y V WILM	and the second			
Parameter	Eunction	Valué range	Unit 3	Standard	R	S	Link
State	State of Summer Winter Compensation	Winter Summer					
Su/Wi input	Status of the Heardware input	Winter Summer					
Outs air tmp damped	Actual damped Outside Temperature						
Summer date / time	Date and Time for switch over to Summer						Section:
Winter date / time	Date and Time for switch over to Winter						5.1,2
Time constant	Time constant for damped Outside Temperature	036000	h	24.0		6	
Outs air tmp summer	If the damped Outside Temperaure > the this Value => Summer	-6464	°C	16.0		6	
Outs air tmp Winter	If the damped Outside Temperaure ≺ the this Value => Winter	-6464	°C	14		6	

17.11 Inputs

17.11.1 Temperatures

Parameter ::::::::::	Eunction	Value range	Unit	Standard	R	S.	Link
Room	Room temperature 1	-6464	°C	1	I	Х	
Room 2	Room temperature 2	-6464	°Č			X	
Exhaust air	Exhaust air temperature	-6464	°C			X	
Supply air	Supply air temperature	-6464	°C			×	
Outside air	Outside air temperature	-6464	°Ç		İ	X	
Extract air	Extract air temperature	-6464	°C			X	Section:
Hrec supply air	Heat recovery supply air temperature	-6464	°C			X	15.3.2
Heat recovery water	Heat recovery water temperaure	-6464	°C			х	
Healing frost	Heating frost protect temperature	-6464	°C			Х	
Heating 2 frost	Heating 2 frost temperature	-64 64	°C			x	
Supply air 2	Supply air 2 temperature (needed if Extra Htg and/or Extra Clg have own sequence	-6464	°C			X	
Auxiliary	Auxiliary Temperature	-6464	°C	1 ~~		×	

17.11.2 Pressures/Flows

Main Index > Uni	t>inputs> Pressures/Flows						
Parameter	Eunetion	Value range	Unit	Standard	R'	S	Link S
Supply pressure	Supply pressure	05000	Pa			×	
Supply air flow	Supply air flow	040000	l/s			X	Section:
Return pressure	Return pressure	05000	Pa			Х	15,3.3

189/244

Main Index > Uni	í ≳ Inputs > Přessures/Flows		Wind of the	9836786782		
Rarameter	Function	Value range:	Ünit :	Standard	S	Link
Exhaust air flow	Exhaust air flow	040000	1/8		X	1
HrecFrost Pressure	Heat recovery Frost Pressure	05000	Pa]	ı	1

17.11.3 Humidity

Main Index > U	nit ≳lnguts ≥ Hümiditÿ				Ň.	312
Rarameter	Eunction	Value range	Ünit	Standard R	S	Link
Supply Rel	Supply Humidity relative	0100	%гН		X	Section:
Room Rel	Room Humidity relative	0100	%rH		×	15.3.4
Outside Rel	Outside Humidity relative	0100	%rH] [X	

17.11.4 Other

Main Index ≥ Ûn	t≳Inputs>Other					
Rarameter		Value range	Unit	Standard F	3 S	Link
AirQuality	Air Quality	03000	ppm	L	×	
ExtSetpoint	External setpoint (abslute or shifting)	-64.064.0	ç		X	Section:
Settings	Jump line to Curve settings for External					15,3.7
•	selpoint			1	-	

17.11.5 Digital inputs

Main Index > Uni	í≽ inputa ≽ Digital Inputs			4900 LL 2007			
Rarameter	Function	Value range	Unit	Standard	R	S	Link
Emergency stop	Emergency stop	OnOff			<u> </u>	Х]
SuWi Input	External Switch for Summer Winter change over	WinterSummer				Х	
Ext control input1	External Switch1 for switching the Unit	OnOff				х	
Ext control input2	External Switch2 for switching the Unit	OnOff			.	X]
Alarm ackn button	Alarm ackn button	activepassive			L	X	Section:
FireDamper Opened	Fire damper Feedback Opened	OKFault				X	15.3.5
FireDamper Closed	Fire damper Feedback Closed	OKFault				L×.	Į
SupplyDamper fdbk	Supply Damper Feedback Opened	OKFault			L_	X]
	Exhaust Damper Feedback Opened	OKFault				X	ļ
Auxiliary input	Auxiliary input	OnOff				×	1

17.11.6 Digital alarms

Main Index > Uni	t > Inputs > Digital alarms Function		21 (2) (2.7 (1.5) 21 (2.7 (2.7)				World Dis
Parameter	Function	Value range	(Onit	Standard	R	S	Link
Fire	External Fire alarm	OKFault				Х	
Fan	If combined Fan generally Fan alarm	OKFaull				Х	
Supply Fan	Supply Fan alarm	OKFault			L	×	
SupplyFan fdbk	Supply Fan Feedback (eg. Pressure Switch)					X	
ExhaustFan	Exhaust fan alarm	OKFault				х	
ExhausiFan fdbk	Exhaust fan Feedback (eg. Pressure Switch)	OKFault				X	
Filter	Filter alarm (only if combined Fan)	OKFault				X	ł
Supply Filter	Supply Filter alarm	OKFault	L			X	
Exhaust Filter	Exhaust Filter alarm	OKFault				X	<u> </u>
Frost protect hrec	Heat recovery Frost monitor	OKFault			<u> </u>	×]
Hrec	Heat recovery alarm	OKFault	1		<u> </u>	X]
HrecPump	Heat recovery Pump alarm	OKFault				X	ļ
HrecPump fdbk	Heat recovery Pump Feedback	OKFault				×	
Htg frost protect	Htg frost protect Detector	OKFault				X	
Heating pump	Heating pump alarm	OKFault				X	Section:
HtgPump fdbk	Heating pump Feedback	OKFault				X]
ElHeating	Electrical Heater alarm	ÖKFault				×]
Humidifier fdbk	Humidification Feedback	OKFault				x]
Humidifier pump	Humidification Pump alarm	OKFault		<u> </u>	L	X]
HumidifierPump fdbk	Humidification Pump Feedback	OKFault		<u> </u>	<u> </u>	X	1
CoolingDx	Dx Cooling alarm	OKFault			1	x	

190/244